- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000100000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chertock, Alina (1)
-
Leonard, Christopher (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
Castro, M (1)
-
Morales_de_Luna, T (1)
-
Munoz_Ruiz, M (1)
-
Pares, C (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pares, C; Castro, M; Morales_de_Luna, T; Munoz_Ruiz, M (Ed.)In this paper, we present a novel approach for simulating solutions of partial differential equations using neural networks. We consider a time-stepping method similar to the finite-volume method, where the flux terms are computed using neural networks. To train the neural network, we collect 'sensor' data on small subsets of the computational domain. Thus, our neural network learns the local behavior of the solution rather than the global one. This leads to a much more versatile method that can simulate the solution to equations whose initial conditions are not in the same form as the initial conditions we train with. Also, using sensor data from a small portion of the domain is much more realistic than methods where a neural network is trained using data over a large domain.more » « less
An official website of the United States government

Full Text Available